Case Studies in Endocrinology

J. Carl Pallais, MD, MPH
Director, Endocrine Subspecialty Education

Massachusetts General Hospital
October 22, 2014
Topics Covered Elsewhere

• Thyroid
• Diabetes
• Lipids
• Female Reproduction
• Osteoporosis
4 Cases

- Hyperparathyroidism
- Incidental Adrenal Nodule
- Hyperprolactinemia
- Male Hypogonadism
Case #1

67 yo woman with a history of HTN and hypothyroidism found to have a calcium of 11.1 mg/dl (nl < 10.5) on routine labs prior to a screening colonoscopy

Approach to hypercalcemia in the office setting
Calcium Regulation

- Parathyroids regulate PTH secretion based on iCa

- PTH increases serum Ca
 - Bone
 - ↑mobilization of Ca
 - Kidney
 - ↑ calcium reabsorption
 - ↑ 1 alpha hydroxylase
 - GI
 - ↑ dietary Ca absorption

- PTH decreases serum phos

Melmed. 2011
Circulating Calcium Concentration

- Only ~50% of circulating calcium is ionized
 - 10% bound to inorganic anions (phos, etc.)
 - 40% bound to Albumin

- Percentage bound is determined by pH
 - Acidosis- ↓ bound, ↑ free
 - Alkalosis- ↑ bound, ↓ free

Causes of Hypercalcemia

- #1 = PTH-dependent
- #2 = Malignancy
- Others
 - Milk-Alkali
 - Vitamin D excess
 - Sarcoid, granulomatous disorders
 - Excess intake
 - Increased bone turnover
 - Hyperthyroidism, Pagets, immobilization, vitamin A
PTH – Dependent Hypercalcemia

- Adenoma (85%)
- Hyperplasia (15%)
 - Spontaneous
 - MEN I & IIA, Jaw Tumors Syndrome
 - Tertiary hyperparathyroidism
- Rare
 - Carcinoma
 - Ectopic PTH
 - Lung, Ovarian, Thymus CA, PNET, Islets Tumor
 - FHH/NSHP/AHH
 - Abnormal Ca-sensing receptor
 - Meds- Lithium

Normocalcemic Primary Hyperparathyroidism
Initial Evaluation

- Calcium, albumin (+/- ionized Ca)
- Phosphate
- PTH

If PTH suppressed:
- 25-OH vit D; 1,25 (OH)$_2$ vit D; PTHrP; TSH; ACE; Alk phos +/- bone scan
- Imaging studies-CA, granulomatous dz
Case #1 Labs

- Repeat calcium 10.9 mg/dl (nl <10.5)
- Albumin 3.6 g/dl
- Phosphate 2.2 mg/dl (nl >2.5)
- PTH 105 pg/ml (nl <60)

Diagnosis = 1° Hyperparathyroidism

Additional work-up?
Hyperparathyroidism: Epidemiology

- Common since the introduction of multi-channel autoanalyzers
 - 100,000 new cases/yr
 - ~30 cases/100,000
- Prevalence increases with age
- More common in women (3:1)
 - ~2-3% of postmenopausal women
- Most cases sporadic w/o clear risk factors
Hyperparathyroidism: Symptoms (Then & Now)

- **Bones**
 - Osteitis fibrosa cystica, pseudogout → osteopenia/osteoporosis

- **Stones**
 - Staghorn kidney, stones, DI → stones

- **Groans**
 - Pancreatitis, PUD → constipation, Abd pain

- **Psychiatric Overtones**
 - Stupor, delirium → fatigue, depressed mood

Asymptomatic incidental finding
Additional Work-Up

- 25-OH vitamin D
- Assessment of renal function
 - BUN/Creatinine
- 24h urine calcium and creatinine*
 - r/in hypercalciuria & r/o hypocalciuria
 - Stone risk profile*
- Abdominal imaging (U/S, X-ray, CT)*
- Bone density & assess vertebral spine*
 - DXA (lumbar spine, hip, & distal 1/3 radius)
 - DXA-VFA or X-ray

Pallais. NEJM.2004; Bilezikian.JBoneMinerRes.2002; JCEM 2009;*JCEM 2014
Indications for Surgery

- Serum Ca > 1.0 mg/dl above ULN
- BMD w T scores < -2.5 at any site
 - or vertebral fracture on imaging*
- Age < 50 yo
- Crt clearance < 60 ml/min ? ‡
- Presence or ↑ risk of kidney stones*
 - 24h UCa>400 mg or stones on imaging
- Relative indications:
 - Symptoms
 - Vitamin D deficiency
 - Patient preference, poor follow-up

Bilezikian.JBMR.2002;JCEM 2009 & *JCEM2014; ‡Hendrickson.JCEM.2014
Parathyroidectomy

- Localization
 - U/S
 - Sestamibi Scan
 - CT
 - Good Surgeon !!!!

- Surgical techniques
 - Neck exploration
 - Minimally invasive

- Complications
 - Hypocalcemia
 - Hungry bone
Case #1 Work-Up

• 67 yo, no h/o fractures or kidney stones

• Labs:
 – Calcium 10.9 mg/dl, (PTH 105 pg/mL)
 – 25-OH vitD – 38 ng/mL (nl>32)
 – (Creatinine clearance > 60 ml/min)

• DEXA
 – T:- 2.0 spine, -2.4 fem neck, -2.7 in hip, -2.8 wrist
 – VFA: no vertebral frx

• 24h Urine calcium – 220 mg Ca

• Abd U/S- no kidney stones

Osteoporosis as indication for surgery
Case #1
Parathyroidectomy

- Tech-99 Sestamibi SPECT suspicious for a R lower parathyroid adenoma
- Neck ultrasound confirmed
- Resection of enlarged gland
 - intraop PTH 112 → 45 pg/ml
- Path- 900 mg gland w little stromal fat c/w adenoma
Parathyroidectomy
Improvement in BMD

Post-surgical improvement

• Spine
 – 9% after 1 yr
 – 12% after 10 yr

• Femoral Neck
 – 5% after 1 yr
 – 10% after 10 yr

• Radius
 – 3% after 1 yr
 – 7% after 10 yr

Silverberg.NEJM.1999 & JCEM.2009; Rubin.JCEM.2008
What If...

...BMD had been normal

- If no indications for surgery, monitor:
 - Serum calcium annually
 - Serum creatinine annually
 - BMD every 1-2 yrs*
 - *Vertebral fracture assessment if clinical signs*
 - *Renal stone assessment if clinical signs*

- Biochemical levels did not change significantly in > 10 yr of f/u

- However, accelerated bone loss may occur

Bilezekian. JCEM.2014*, Khan.JCEM.2009
What If...

...Patient refused surgery

- Available medical therapy include:
 - Bisphosphonates
 - Calcimemetic Agents

Bilezekian. JCEM.2014, Khan. JCEM.2009
Case #2

65 yo man with a history of HTN, DM, dyslipidemia, and gout found to have a 2 cm right adrenal mass on a CT done to evaluate RLQ abdominal pain which has since resolved.

He is currently on lisinopril, HCTZ, and metoprolol for his HTN which is marginally controlled.

Approach to the adrenal incidentaloma
Adrenal “Incidentaloma”

- Adrenal mass >1 cm
- Incidentally discovered during radiographic evaluation
- Increasing in incidence because of widespread use of abdominal imaging
Prevalence of Adrenal Nodules

- Autopsy ~ 6%
 - Young. 2000
- Abdominal CT ~ 4%
 - Bovio.2006
- Prevalence increases with age
 - 20-30 yo ~ 0.2%
 - 40-50 yo ~ 3%
 - >70 yo ~ 7%
 - Kloos.1995
EVALUATION

• IS IT FUNCTIONAL?

• IS IT MALIGNANT?
Adrenal Physiology

• CORTEX
 – Glomerulosa – Aldosterone
 – Fasciculata – Cortisol
 – Reticularis – DHEA

• MEDULLA
 – Chromaffin- Epinephrine
Functional Adrenal Incidentalomas

• Cortisol secreting adenomas
 – ~5% of incidentalomas
 – May have subclinical Cushing’s w/o typical findings of hypercortisolemia

• Pheochromocytomas
 – ~3% of adrenal incidentalomas
 – 60% of pheochromocytomas discovered incidentally as adrenal masses
 • Only ~50% of incidentally discovered pheos had HTN

• Aldosterone secreting adenomas
 – ~1% of incidentalomas
 – Most with HTN

Young.EndoMetabClinNA.2000
Initial Evaluation

- History and physical
- Hormonal testing
- Radiographic phenotype
Cushing’s (+/-Subclinical)

History and Physical
- Moon facies, plethora
- Central obesity, subclavicular, dorsocervical fat pads
- Depression, emotional lability
- HTN
- Fungal infections
- *Easy bruising
- *Violaceous, wide striae
- *Proximal muscle weakness

Laboratory Findings
- *Hypokalemia
- Hyperglycemia/DM
- Leukocytosis with relative lymphopenia
- Osteopenia/osteoporosis
Pheochromocytoma

History and Physical

- Pounding headaches
- Palpitations
- Pressure abnormalities
 - HTN / Orthostasis
- Perspiration
- Pallor
- Paroxysmal or persistent spells
- “Phever”
- Plugging= constipation
- Anorexia
- Anxiety, tremor
- Lid lag

Laboratory Findings

- Hemoconcentration w elevated Hct
- Hypercalcemia
- Hyperglycemia
Hyperaldosteronism

History and Physical

- HTN
- +/- symptoms of hypokalemia
 - Muscle weakness / cramping
 - Parasthesias
 - Palpitations
 - Polyuria / polydipsia

Laboratory Findings

- *Hypokalemia (<70%)
 - May result in insulinopenia \rightarrow hyperglycemia
- Metabolic alkalosis
Hormone Evaluation

• 1 mg Dexamethasone Suppression
 – Preferred as subclinical Cushing’s may have nl 24h UFC
 – Abnormal if post suppression cortisol > 5 ug/dl (≥ 1.8 ug/dl)

• Plasma Fractionated Metanephrines
 – Plasma metanephrines
 • Sensitivity >96%, specificity 75-89%
 – 24 h urine metanephrines & catecholamines
 • Sensitivity 91%, specificity 98%

• If HTN, Plasma Aldosterone Concentration / Plasma Renin Activity (PAC / PRA)
 – Abnormal if PAC/PRA ratio > 20 AND PAC > 15 ng/dl
 – Can be done on any BP meds EXCEPT spironolactone, eplerenone, and amiloride

Tsagrakis.2006; Gorges.1999; Sawka.2003; Young.2007
Confirmatory Testing

If initial hormone testing is abnormal, need confirmatory testing [REFER]

- **Cushing’s Syndrome**
 - 24h Urine Free Cortisol, midnight salivary cortisol, ACTH

- **Pheochromocytoma**
 - 24h Urine metanephrine, I^{123}MIBG

- **Hyperaldosteronism**
 - Aldosterone suppression test
 - NS IV or 3 day salt load
 - +/- Adrenal vein sampling

If adrenal nodule confirmed to be hyperfunctional → SURGERY

Young. NEJM. 2007; Androulakis. JCEM. 2014; Lim. JCEM. 2014
Evaluation Algorithm

Hormonal Testing (DST, metanephrines, PAC/PRA)

Positive results

Confirmatory testing

Lack of autonomous secretion of cortisol, aldosterone, or catecholamines

Negative results

Imaging phenotype

Consider:
Surgery

Young. NEJM. 2007
Radiographic Phenotype

- High fat content = Adenoma
 - CT
 • low attenuation (<10 HU)
 • Rapid washout of contrast (>50% washout in 10’, >60% in 15’)
 - MRI
 • signal loss on out-of-phase images in chemical shift MRI (lipid sensitive mode)

- Low fat content
 - CT
 • Increased attenuation (prominent vascularity)
 • Delayed washout of contrast
 - MRI
 • high signal intensity in T2 imaging

Adenoma

3.6cm
-18 HU
>60% washout

Pheochromocytoma

4.5 cm
40 HU
<50% washout

Malignancy

7.5 cm
30 HU
<50% washout
Predictors of Malignancy

• Cancer history
 – History of cancer (esp. lung, breast, kidney, GI)
 • 20-50% of adrenal masses are mets (often bilaterally)
 – No known cancers
 • >85% represent benign tumors

• Size of Mass (if no h/o CA)
 – <4 cm - ~ 2% malignant (adrenal cortical CA)
 – >6 cm - ~ 25% malignant (adrenal cortical CA)

• Radiographic Phenotype

<table>
<thead>
<tr>
<th>Good</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>smooth</td>
<td>irregular</td>
</tr>
<tr>
<td>homogenous</td>
<td>heterogeneous</td>
</tr>
<tr>
<td><10HU, ↑washout</td>
<td>> 30 HU, ↓washout</td>
</tr>
<tr>
<td>Slow growth (<1cm/yr)</td>
<td>rapid growth (>1cm/yr)</td>
</tr>
</tbody>
</table>

Evaluation Algorithm

Hormonal Testing (DST, metanephrines, PAC/PRA)

Positive results
- Lack of autonomous secretion of cortisol, aldosterone, or catecholamines

Negative results
- Imaging phenotype
 - **Benign appearance**
 - Unenhanced CT attenuation ≤10 Hounsfield units
 - CT contrast-medium washout ≥50% at 10 min
 - **Suspicious appearance**
 - Unenhanced CT attenuation >10 Hounsfield units
 - CT contrast-medium washout <50% at 10 min

Confirmatory testing
- Confirmation of autonomous secretion of cortisol, aldosterone, or catecholamines

Consider:
- Surgery
 - Growth ≥1 cm
 - Autonomic hormonal secretion

Consider:
- Repeating imaging at 6, 12, and 24 mo
- Repeating hormonal testing annually for 4 yr
- Surgery if mass is ≥4 cm in diameter

Consider:
- Fine-needle aspiration biopsy if metastatic disease or infection suspected
- Surgery
- Close follow-up (e.g., repeating imaging at 3 mo)

Young.NEJM.2007
Case # 2

- Obese, HTN, DM but no other suggestive clinical findings (nl K+, etc)
- Hormonal Testing
 - DST, metanephrines, Aldo/Renin all WNL
- Adrenal Protocol CT
 - 2 cm, homogenous, smooth borders
 - -5 HU, > 60% washout at 15 minutes

DX= Benign Adrenal Adenoma

- Follow-up
 - Yearly hormonal tests x 4 yrs
 - F/U imaging to confirm lack of growth
Case #3

32yo G2P2 woman with history of anxiety found to have a prolactin level of 56 ng/ml (nl <20) during evaluation of persistent amenorrhea 6 months after she stopped nursing her youngest child.

Approach to the patient with hyperprolactinemia
Prolactin Physiology

- Prolactin secretion from pituitary lactotrophs under tonic inhibitory hypothalamic control

- INHIBITORY SIGNALS
 - Dopamine

- STIMULATORY SIGNALS
 - TRH
 - Serotonin
 - Histamine
 - Estrogen
 - Breast/chest wall stimulation (spinal afferent)
 - Stress, food-insulin, exercise, intercourse, sleep
 - TRH
 - VIP
 - GnRH
 - Angiotensin II
 - Oxytocin

- Prolactin is released in a pulsatile fashion 4-9 pulses/day w levels rising during late sleep
 - Levels < 25 ng/ml in women (<20 ng/ml in men)

- Primary function is the regulation of lactation
 - Prolactin increases in pregnancy (200’s ng/ml)
 - Lactation when estrogen levels fall
 - PRL inhibits LH, FSH secretion

DDX of Hyperprolactinemia

- Pregnancy
- Hypothyroidism
- Drug-Induced
- CNS abnormalities
- Prolactinoma
- Other
 - Breast stimulation, chest wall lesions (zoster, etc), seizure
 - Renal failure, liver dz
TABLE 1. Medications That May Cause Hyperprolactinemia

Antipsychotics (neuroleptics)
- Phenothiazines
- Thioxanthenes
- Butyrophenones
- Atypical antipsychotics
Antidepressants
- Tricyclic and tetracyclic antidepressants
- Monoamine oxidase inhibitors
- Selective serotonin reuptake inhibitors
Other
Opiates and cocaine
Antihypertensive medications
- Verapamil
- Methyldopa
- Reserpine
Gastrointestinal medications
- Metoclopramide
- Domperidone
- Histamine, receptor blockers?
Protease inhibitors?
Estrogens

TABLE 2. Effects of Psychotropic Medications on Prolactin Levels

<table>
<thead>
<tr>
<th></th>
<th>Increase in prolactin†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antipsychotics</td>
<td></td>
</tr>
<tr>
<td>Typical</td>
<td></td>
</tr>
<tr>
<td>Phenothiazines</td>
<td>+++</td>
</tr>
<tr>
<td>Butyrophenones</td>
<td>+++</td>
</tr>
<tr>
<td>Thioxanthenes</td>
<td>+++</td>
</tr>
<tr>
<td>Atypical</td>
<td></td>
</tr>
<tr>
<td>Risperidone</td>
<td>+++</td>
</tr>
<tr>
<td>Molindone</td>
<td>++</td>
</tr>
<tr>
<td>Clozapine</td>
<td>0</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>+</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>0</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>0</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>+</td>
</tr>
<tr>
<td>Antidepressants</td>
<td></td>
</tr>
<tr>
<td>Tricyclics</td>
<td></td>
</tr>
<tr>
<td>Amitriptyline</td>
<td>+</td>
</tr>
<tr>
<td>Desipramine</td>
<td>+</td>
</tr>
<tr>
<td>Clomipramine</td>
<td>+++</td>
</tr>
<tr>
<td>Nortriptyline</td>
<td>–</td>
</tr>
<tr>
<td>Imipramine</td>
<td>CR</td>
</tr>
<tr>
<td>Maprotiline</td>
<td>CR</td>
</tr>
<tr>
<td>Amoxapine</td>
<td>CR</td>
</tr>
<tr>
<td>Monoamine oxidase inhibitors</td>
<td></td>
</tr>
<tr>
<td>Pargyline</td>
<td>+++</td>
</tr>
<tr>
<td>Clorgyline</td>
<td>+++</td>
</tr>
<tr>
<td>Tranylcypromine</td>
<td>±</td>
</tr>
<tr>
<td>Selective serotonin reuptake inhibitors</td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>CR</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>±</td>
</tr>
<tr>
<td>Citalopram</td>
<td>±</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>±</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Nefazodone</td>
<td>0</td>
</tr>
<tr>
<td>Buproprion</td>
<td>0</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>0</td>
</tr>
<tr>
<td>Trazodone</td>
<td>0</td>
</tr>
</tbody>
</table>

*CR = isolated case reports of hyperprolactinemia but generally no increase in prolactin levels.
†0 = no effect; ± = minimal increase but not to abnormal levels; + = increase to abnormal levels in small percentage of patients; ++ = increase to abnormal levels in 25% to 50% of patients; +++ = increase to abnormal levels in more than 50% of patients.
CNS Disorders

Hypothalamic Disorders
• Tumors
 – Craniopharyngiomas
 – Meningiomas
 – Dysgerminomas
 – Gliomas
 – Lymphoma
 – Metastatic disease
• Infiltrative dz/ infection
 – Sarcoid
 – Tuberculosis
 – Eosinophilic Granuloma
• Other
 – Irradiation, trauma

Pituitary Disorders
• Stalk disorders
 – Trauma
 – Tumors
 – Infiltration
 – Arterial aneurysm
• Pituitary Macroadenomas
 – Stalk compression

Prolactinoma

- Benign pituitary adenomas
- Most common hormone secreting pituitary tumor
 - Account for ~40 % of pituitary tumors
- > 90% are small and slow growing
- Tumor size is correlated to prolactin levels
 - Macroadenoma (>1 cm) → PRL usually >200 ng/ml
 - If prolactin < 100-150 ng/ml
 - Non-prolactin tumor w stalk compression
 - Hook effect- assay artifact at very high PRL concentration
 - Idiopathic hyperprolactenemia (<2-3mm)

Molitch.1992.; Schlechte.NEJM.2003
Pituitary Anatomy

- Anterior pituitary
 - Lactotrophs- laterally
- Cranial Nerves
- Chiasm
- Vessels
- Sphenoid sinus

Clinical Presentation

Women
- Amenorrhea/oligomenorrhea
- Infertility
- Galactorrhea
 - Up to 80%, not all symptomatic
- Tumor effects
 - Rare in women as most tumors are small
- Osteopenia

Men
- Tumor effects
 - HA
 - CN palsy
 - Visual field defects
 - Hypopituitarism
- Hypogonadism
 - Decreased libido
 - Erectile dysfunction
 - Infertility
- Osteopenia
- NOT galactorrhea
 - Exceedingly rare

Schlechc.nejm.2003
Initial Evaluation

• History and physical
 – Meds
 – Evidence of secondary causes
 – Mass effect

• Labs
 – Repeat prolactin (+/- serial dilutions)
 – hCG, TFTs, BUN/Crt, LFTs
 – +/- other pituitary function tests
 • IGF-1, LH, FSH, gonadal steroids, cortisol

• Imaging studies
 – MRI with gadolinium better than I+ CT
 • If macroadenoma → formal visual field testing
Case # 3

- No physiologic or known secondary causes, no other symptoms besides amenorrhea
- Exam unremarkable except for expressive galactorrhea
- Laboratory Tests
 - Repeat PRL 70 ng/ml
 - hCG negative
 - BUN/Crt, LFT’s, TSH, FT4, IGF-1 all WNL
 - LH, FSH, and estrogen suppressed
- MRI showed a 5 mm pituitary adenoma not impinging on chiasm
- Not interested in further fertility
Indications for Treatment

- Macroadenoma or tumor growth
- Hypogonadism
- Infertility
- Symptoms
 - Galactorrhea
 - Hirsutism

Conservative monitoring is an option for pts not interested in fertility & no other indication

Klibansky.NEJM.2010, Melmed. JCEM.2011
Treatment Options

- Dopamine agonists
 - Bromocriptine
 - Cabergoline
- OCP
 - If small microadenoma in pt not desiring further fertility and whose only indication for trx is amenorrhea
- Surgery
 - Unable to tolerate medical tx, unresponsive to tx (persistent chiasmal compression, ↑ tumor size), apoplexy
 - High recurrence rate
- XRT
 - More definitive but higher risk of panhypopituitarism
Bromocriptine vs Cabergoline

- Cabergoline is easier to administer
 - Cabergoline has a longer half life (can be dosed weekly)
 - Bromocriptine has more side effects
 - Nausea, vomiting (50%)
 - HA (20%)
 - Orthostasis (20%)
 - Nasal Congestion
 - Constipation
 - Fatigue, anxiety

- Cabergoline more effective
 - PRL normalization (80% vs 60%)
 - Pts achieving >50% tumor shrinkage (96% vs 64%)
 - Persistently normal PRL after trx d/c’ed (60% vs 33%)
 - Cabergoline effective for tx of bromocriptine resistant tumors

- Bromocriptine preferred when fertility is an issue
 - More experience w bromocriptine in pregnancy

Gillam.2006; Webster.NEJM.1994; Schlechte.NEJM.2003; Melmed.JCEM.2011
Case # 3

- **Treatment**
 - Dopamine agonist [or OCP]

- **Follow-up**
 - Prolactin - yearly
 - MRI
 - If clinical evidence of tumor expansion
 - If considering trial off dopamine agonists
 - After > 2yrs of uninterrupted treatment
 - Persistently normal prolactin measures
Cabergoline Withdrawal

If initial adenoma < 2cm AND PRL has normalized, tumor shrank by >50%, & no evidence of cavernous sinus invasion, can attempt to d/c cabergoline after 2 yrs of trx

- Long-term remission possible based on tumor size
 - Before TX:
 - Non-tumoral ~ 75%
 - Microprolactinoma ~ 66%
 - Macroprolactinoma ~ 50%
 - After TX:
 - No remnant tumor ~80%
 - Remnant tumor ~50%

- Renewed tumor growth was not seen 5 yrs after cabergoline w/d

• Long-term use of cabergoline for ↑ prolactin a/w TR but of unclear clinical significance
 – Mod TR in cabergoline vs controls: 54% vs 18%

• Use lowest dose of cabergoline to normalize prolactin & consider withdrawal trial depending on response
Case #4

58 yo man with a history of DM, HTN, and dyslipidemia was found to have an afternoon testosterone level of 185 ng/dl (nl >270) after complaining of erectile dysfunction, diminished libido, and decreased energy.

Approach to the patient with androgen deficiency
“Andropause”

Several cross-sectional and longitudinal studies have demonstrated a decline in serum testosterone with age

- Testosterone levels ↓ at a fairly constant rate
 - average ↓ 3.2 ng/dl / year
 - Baltimore Longitudinal Study of Aging

- Increased frequency of testosterone values in the hypogonadal range with aging

Who Has Androgen Deficiency?

Endocrine Society Clinical Practice Guideline

“We recommend making the diagnosis of androgen deficiency **only** in men with **consistent symptoms and signs** and **unequivocally low serum testosterone levels**”

Bhasin. JCEM. 2010
Challenges

“We recommend making the diagnosis of androgen deficiency only in men with consistent symptoms and signs and unequivocally low serum testosterone levels”

• Signs and symptoms are non-specific
 – Common with age
 – Often seen in patients with normal testosterone levels

• Many barriers in determining what constitutes “unequivocally low” testosterone levels
Androgen Deficiency

Clinical findings depend on age of onset
- Fetal- hypospadias, microphallus, cryptorchidism
- Prepubertal-incomplete sexual maturation
- Adulthood- regression of sexual function, infertility, hot flashes

Most signs and symptoms are non-specific

More reliable features
- Abnormal sexual development
 - Prepubertal testes
 - High pitched voice
 - Eunuchoid proportions
- ↓ virilization
- Azoospermia
- New gynecomastia
- Hot flashes
- Fragility fracture
- Impaired sexual function*, ↓ libido*, ↓ spontaneous erections*

Less reliable features
- Mild anemia
- Decreased energy
- Decreased aggressiveness
- Depressed mood
- Decreased muscle/strength
- Impaired memory
- Increased adiposity

Pallais. 2007, Bhasin.2010, *Wu.2010
Signs and Symptoms of Sexual Dysfunction are Common

• High prevalence of sexual problems even in young men (<60 yo)
 – By age 40, 40% of men reported some level of impaired sexual function
 Wu. NEJM.2010; Laumann. JAMA.1999

• There is a waning in sexual function and libido with each decade
 Massachusetts Male Aging Study (Feldman.1994, Araujo.2004)

• Decline in sexual function is associated with co-morbid conditions
 Health Professional Follow-up Study (Bacon.2003)
Challenges in Testosterone Measurements

• Physiologic variations
 – Pulsatile secretion
 – Circadian variation
 – Protein binding

• Technical challenges
 – Tissue conversion and intracellular receptors

• No established physiologic testosterone threshold to guide therapy or confirm the diagnosis of androgen deficiency
 – Only population norms

• Effect of medicines and co-morbid conditions
Normal Physiology

- Hypothalamic-Pituitary-Gonadal (HPG) Axis
 - GnRH
 - LH, FSH
 - Testosterone, gametogenesis

- Pulsatile gonadotropin secretion
 - ~10-12 pulses/d
 - Significant fluctuations in testosterone levels (can be >50%)

- Circadian variation
 - Morning > evening
 - ~20% of normal subjects with testosterone levels occasionally dipping into the “hypogonadal” range in a 24h period
Circulating Testosterone

Protein binding
- "Bioavailable" testosterone is non-SHBG bound fraction
 - ~55% tightly bound to SHBG
 - ~45% weakly bound to Albumin
 - ~1-3% free

Several factors alter SHBG levels

<table>
<thead>
<tr>
<th>Conditions that ↑ SHBG</th>
<th>Conditions that ↓ SHBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging</td>
<td>Obesity</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>Nephrotic syndrome</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>Hypothyroidism</td>
</tr>
<tr>
<td>HIV</td>
<td>Acromegaly</td>
</tr>
<tr>
<td>Estrogen</td>
<td>Androgens</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>Insulin</td>
</tr>
<tr>
<td>GH deficiency</td>
<td>Glucocorticoids</td>
</tr>
<tr>
<td></td>
<td>Progestins</td>
</tr>
<tr>
<td></td>
<td>Familial</td>
</tr>
</tbody>
</table>

Testosterone Measurements

• Reliable assays for free or bioavailable testosterone are not widely available
 – Commonly available free testosterone measurements are not very reliable
 – Can estimate bioavailable androgens from total testosterone and SHBG concentration

• Normative ranges in healthy young men vary among laboratories & assays
 – Use lower limits of nl for reference lab

30% of pts in the mildly hypogonadal range have normal levels on repeat measurement

Bhasin.JCEM.2006, Rosner.JCEM.2007
Additional Limitations

- Testosterone is a pro-hormone
 - Enzymatic conversion in tissue
 - Dihydrotestosterone (5αReductase)
 - Estrogen ($Aromatase$)
 - Inactivated (3αReductase)

- Affect is mediated through intracellular receptor

- No clear physiologic threshold for hypogonadism has been established

Hypogonadism in Men (HIM), Hypogonadism with Estrogen Removal (HER)

- Chemical castration with different doses of testosterone add-back (HIM)
 - 0, 1.25, 2.5, 5, or 10 g of testosterone gel
- + Aromatase inhibitor (HER)
 - Evaluate dose-response of various outcomes

Physiologic Outcomes

Testosterone’s effects on many physiologic outcomes were dependent on estradiol levels

- Pure androgenic effects
 - PSA, Hct, lean mass, strength
- Strong estrogen effect
 - ↑ sexual fnx
 - ↓ body fat
 - ↓ bone turnover

Different outcomes had different testosterone “thresholds”

Finkelstein, Pallais, et al. NEJM. 2013 & unpublished data
Diagnostic Gray Zones

• Symptoms
• Testosterone
 - Measurements
 - Levels (± Estrogen)
• Cause and effect vs reverse causation
 - ↓T → disorder, or
 - disorder → ↓T
 - RCT are rare

Photo by Marco Belluci
Evaluation

• Morning testosterone & SHBG measurement
 – Confirm by repeating on more than one occasion

• LH & FSH to differentiate between primary and secondary causes
 – Primary- high LH & FSH
 – Secondary- inappropriately low LH & FSH (may within the “normal” range)
Primary Hypogonadism

- Testicular defect
- High LH, FSH, low testosterone
- Causes
 - Viral orchitis
 - Toxins
 - Radiation, chemotherapy
 - Drugs
 - Alcohol, ketoconazole, spironolactone, metronidazole, etomidate
 - Trauma
 - Systemic diseases
 - Cirrhosis, renal failure, granulomatous dz, HIV
 - Klinefelter Syndrome (47, XXY)
Secondary Hypogonadism (Hypogonadotropinemic Hypogonadism)

- Central defect
- Inappropriately low LH, FSH, low testosterone
- Causes
 - Hypothalamic or pituitary disorders
 - Tumors, infiltrative diseases, head trauma
 - Hyperprolactinemia
 - Hemochromatosis
 - Functional
 - Acute illness, eating disorders, depression, excessive exercise, AIDS
 - Drugs
 - Glucocorticoids, opiates, MJ, digitalis, exogenous estrogens
 - Idiopathic
 - Anosmic vs normosmic
Primary vs Secondary

• Further evaluation
 – Primary
 • Karyotype - including test for mosaic 46,XY/47,XXY
 – Secondary
 • MRI
 • Prolactin
 • Pituitary function testing
 • Iron studies
 • ACE-levels
 • Genetic testing / counseling for IHH
 – Consider BMD for any cause of hypogonadism

• Implications for fertility
 – Better success achieving fertility in secondary hypogonadism

Pallais.Hypogonadotropin Hypogonadism Overview. 2007
Evaluation of Hypogonadism

History and physical (symptoms and signs)

Morning Total T

Low T #

Exclude reversible illness, drugs, nutritional deficiency
Repeat T [use free or bioavailable T, if suspect altered SHBG^]
LH+FSH
SFA [if fertility issue]

Confirmed low T [Low total T ; or free or bioavailable T^]

Low T, low or normal LH+FSH (secondary hypogonadism)

Low T, high LH+FSH (primary hypogonadism)

Normal T, LH+FSH

Follow up

Bhasin.JCEM.2010
Who to treat?

Endocrine Society Clinical Practice Guideline

“We recommend testosterone therapy for symptomatic men with the classical androgen deficiency syndromes aimed at inducing and maintaining secondary sex characteristics and at improving their sexual function, sense of well-being, and bone mineral density.”

Bhasin.JCEM.2010
Treatment

• Contraindications
 – Prostate cancer
 – Breast cancer

• Relative contraindications
 – Prostate nodule or induration
 – Unexplained PSA elevation
 – Severe BPH
 – Erythrocytosis (Hct > 50%)
 – Untreated obstructive sleep apnea
 – Unstable CHF

Bhasin.JCEM.2010
Treatment

• Benefits
 – Improved sexual function
 – Improved bone density (*no fracture data*)
 – Improved body composition
 – Improved anemia

• Side effects
 – Adverse prostate effects
 • Worsening BPH and prostate cancer
 – Cardiovascular events?*
 – Reduced sperm production and fertility
 – Induction or worsening of obstructive sleep apnea
 – Erythrocytosis
 – Gynecomastia
 – Acne and oily skin
 – Male pattern balding

Effects on the Prostate

- Moderate increase in prostate volume
- Increase in PSA within the normal range (0.2-0.5 ng/ml)
- Reviews of variable quality trials (3mo - 3yr) have shown conflicting results in the rate of all combined prostate events in testosterone treated group c/t placebo
 - prostate CA, biopsy, PSA>4 ng/ml, ↑IPSS>4
- Insufficient years of follow-up to determine clear effect on prostate cancer

Effects on the Prostate

Composite prostate outcomes higher in T group vs controls
OR 1.8 (p<0.05)

FIG. 2. Results of the random effects meta-analyses of testosterone on patient-important outcomes.
Cardiovascular Effects

- Testosterone treatment increased the rate of CV events in men with multiple risk factors

RCT in frail men (avg age 74 yo)

- Cumulative Probability of Event
- OR 5.8 (2.0-16.8)
- P<0.001

Observational study s/p cardiac cath

- No testosterone therapy
- Testosterone therapy

- Death, MI, or CVA

- HR 1.29 (p=0.02)
- Log-rank P = .02

OR 5.8 (p<0.001)

Basaria.NEJM.2010

HR 1.29 (p=0.02)

Vigen.JAMA.2013
• **Drug Safety Communication about possible CV risks (1/2014)**
 - "(FDA) is investigating the risk of stroke, heart attack, and death in men taking FDA-approved testosterone products."

• **Label Warning about potential venous blood clots (6/2014)**
 - "(FDA) is requiring manufacturers to include a general warning in the drug labeling of all approved testosterone products about the risk of blood clots in the veins."

• **Advisory panel recommends label change limiting the use of testosterone to treat lifestyle issues (9/2014)**
The Business of “Low T”

Confessions of a “Low T” ghost-writer

- Accurate but unbalanced data presentation
 - Emphasizing benefits & understating risks
- Controversial guideline omissions
 - Caution about long-term risks given low quality of available data
 - Analogous to HRT prior to WHI
 - Transient state of symptomatic hypogonadism
 - Analogous to functional hypothalamic amenorrhea

CV events in RCT of testosterone Rx varied by source of funding

Pharma Funded

OR 0.89 [0.5 - 1.6]

NOT Pharma Funded

OR 2.06 [1.34 - 3.17]
Treatment

- The risk/benefit ratio for testosterone replacement in older men is more difficult to determine than in younger men.

- No mortality data available for the long term use of testosterone replacement.
Testosterone Formulations

- **Intramuscular**
 - Testosterone enanthate/cypionate- 100 mg/wk or 200 mg /2 wks
 - Supraphysiologic peak and hypogonadal trough levels
 - Testosterone undecanoate- 750 mg q 10 wks
 - Concern for pulmonary oil microembolism and anaphylaxis

- **Transdermal**
 - Patch (5 mg)- 1 or 2 patches/night
 - Skin irritation
 - 1% /1.62%/2% Gel – ~30-100 mg/d to extremities/trunk/axilla
 - Potential transfer to female partner or child by direct contact
 - Moderately high DHT levels (lowers T:DHT ratio)

- **Buccal bioadhesive tablets / Nasal Spray**
 - 30 mg bioadhesive tablets bid / 5.5 mg – 2 pumps tid
 - Mucosal irritation, altered taste

- **Testosterone pellets**
 - 75 mg pellets- 2-6 pellets implanted sc q 3-6 months
 - Surgical insertion, may extrude spontaneously

Bhasin.JCEM.2010
Goals and Follow-Up

- Evaluate for **response** & **side effects** at 3-6 months and then annually

- Measure **testosterone levels** 3-6 months after starting therapy & then yearly
 - Aim for testosterone levels in the mid-nl range

- Check **Hct** at baseline, 3-6 months, & then yearly
 - Stop tx if Hct>54% until it drops to safe level & evaluate pt for hypoxia and sleep apnea

- If >40-50 yo, **digital rectal exam** & **PSA** at baseline, 3-6 months, and then in accordance to guidelines
 - Refer if: 1) abnl exam, 2) ↑ PSA > 1.4 ng/ml within a yr, 3) PSA velocity >0.4 ng/ml-yr for periods >2 yrs

Bhasin.JCEM.2010
Case # 4

• History & Physical
 – Pt recently started on narcotics for back injury
 – Reported increased stressors at work & home
 – ED was long-standing
 • Had h/o peripheral vascular disease
 • On multiple antihypertensive agents
 – Fatigue temporally correlated to his injury
 – Father and uncle with prostate cancer
 – Obese with BMI 34, no other signs of hypogonadism

• Lab tests normalized after narcotics d/c’ed
 – Repeat morning testosterone measurements
 • T 300-400 ng/dl range with low SHBG levels
 – LH, FSH, & prolactin WNL
Case # 4

• Pt initially disappointed to have “low” T levels

• Discussed
 – Problems related to testosterone measurements (physiologic variations, not a measure of physiologic activity, unclear what constitutes “normal” values)
 – How testosterone levels tend to be lower in obesity (bec of ↓SHBG)
 – Effects of drugs & stress on the HPG axis
 – Likely multi-factorial cause of his ED
 – Potential risk factors with testosterone therapy

• Testosterone replacement not initiated and pt had a good response to tadalafil
Thank You!